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Abstract

This paper introduces the Generate, Prune & Prove (GPP) methodology for

discovering definitions of mathematical operators. GPP is a task within the IL

exploration discovery system. We developed GPP for use in the discovery of

mathematical operators with a wider class of representations than was

possible with the previous methods by Lenat and by Shen. GPP utilizes the

purpose for which an operator is created to prune the possible definitions.

The relevant search spaces are immense and there exists insufficient

information for a complete evaluation of the purpose constraint, so it is

necessary to perform a partial evaluation of the purpose (i.e., pruning)

constraint. The constraint is first transformed so that it is operational with

respect to the partial information, and then it is applied to examples in order

to test the generated candidates for an operator's definition. In the GPP

process, once a candidate definition survives this empirical prune, it is passed

on to a theorem prover for formal verification. In this paper, we describe the

application of this methodology to the (re)discovery of the definition of

multiplication for Conway numbers, a discovery which is difficult for human

mathematicians. We successfully model this discovery process utilizing

information which was reasonably available at the time of Conway's original

discovery. As part of this discovery process, we reduce the size of the search

space from a computationally intractable size to 3468 elements.
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1. Introduction

This paper addresses a method for the automatic discovery of operators in

mathematical domains. Our research indicates that the use of often implicit

information, such as an operator's purpose, can be crucial in controlling such

a discovery. When we invent concepts, we often have a specified purpose

which the concept is intended to satisfy. In this paper, we examine the

creation of mathematical operators which satisfy their intended purposes. In

particular, we have undertaken the investigation of the computer discovery

of elementary operations of number systems (e.g., addition of integers).

Purposive, structural (e.g., complex numbers having real and imaginary

parts), and problem decomposition information seem crucial to the realistic

computer modeling of much of mathematical reasoning. Further, the ability

to reason with and about partial information regarding the mathematical

objects at hand is often required. It is only by such reasoning that we can

constrain the size of the relevant search spaces in many problems. This work

is a case study in the realistic modeling of the discovery of Conway

multiplication, with implications to the information and processes required

for the modeling of a broad spectrum of mathematics.

A generation ago, the results of symbolic manipulation of mathematical

formulas was more promise than utility, and today we find wide use of

systems such as Macsyma and Mathematica. Similarly, today there is great

promise for the future use of sophisticated software to aid in the discovery of

mathematics. The research presented in this paper is one task (i.e.,

subprogram) inan ambitious projec t (th e !L project [Sims 90]) to push the

limits of automatic discovery of mathematics in the domain of Conway

numbers. The presented task was developed and subsequently implemented

to enable the discovery of an important class of operators.

o-

In this paper, we present Generate, Prune, & Prove (GPP), a specialization of

generate and test for the discovery of mathematical operator definitions. In

the Generate, Prune and Prove process (see figure 1):

• a conjecture is generated in some language using heuristic search

(generate phase);
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• that conjecture is evaluated with respect to applicable constraints on

examples (prune phase);

• if the conjecture successfully passes the prune phase then a theorem

prover is used to formally verify the conjecture (prove phase).

In this paper's example of GPP we search over the space of operator

definitions; the search is drastically reduced by using problem decomposition

to search over partial definitions of these operators. In GPP, to discover a new

operator definition one needs: (i) the purpose of the operator, (ii) a language

for specifying a definition, (iii) methods for testing a candidate definition, and

(iv) ways to control these activities. We next summarize the GPP method;

the details of GPP are illustrated in later sections with the example of the

discovery of a multiplicative operator for the domain of Conway numbers

[Conway 76]. A description of the application of this methodology to the

simpler case of multiplication of complex numbers can be found in [Sims &

Bresina 89]. The prove phase will not be described in detail in this paper.

Language of primitive
terms and combiners Operatlonallzed

Constraint

GenerateI pronoI ProveJ

General Heuristics: Examples Current domain
- Dimensionallty (known previously theory

constraint and generated)
- Recursively well

defined

Figure 1: Generate, Prune, and Prove.

The GPP process consists of the generation of candidates, the pruning of those

candidates on examples, and finally a formal validation using a theorem

prover (see figure 1). During the generate phase, candidate operator

definitions (or partial definitions) are generated in increasing order of

complexity. The generation process is biased by heuristics regarding what

operator definitions might look like. The intended purpose of the operator is
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used to specify a pruning constraint that is made operational for the current

problem and to specify a set of pruning examples. During the prune phase, a

candidate definition is tested using the pruning constraint and examples; if,
on any example, the constraint (applied to the candidate) is not satisfied, then

the candidate is pruned from the search space. During the prove phase, a
theorem prover attempts to prove the conjecture that a candidate definition

satisfies its intended purpose. This analytic prune (i.e., prove phase) is

applied after the empirical prune (i.e., prune phase) has reduced possible
candidates to a small number. The rationale for the control flow between the

three phases of GPP is based on their relative expected computational costs.

Usually, the prove phase is computationally the most expensive phase;

hence, we try to get as much pruning as possible from the empirical prune
phase -- which is why our heuristics call for expending effort strengthening

the pruning constraint if it appears that it is satisfied by too many candidates3

In the remainder of this paper, we discuss the use of the generate and prune

phases of GPP to discover the definition of the multiplicative operator for

Conway numbers. This discovery is subtle even for human mathematicians.

The knowledge used in this computer discovery would have been realistically

• available to John Conway at the time of his original discovery. This

knowledge includes that a purpose of the definition for Conway

multiplication is to enable Conway numbers to be a field, and for the natural

mapping from the reals to the Conway numbers to be a homomorphism

under this definition of multiplication.

This research was stimulated by previous work [Lenat 77; Shen 90] on the

discovery of mathematical operators. Lenat's original work and Shen's

refinement of it into an elegant, functional transformation framework

depend upon a special representation of operator definitions, which typically

is not appropriate for mathematical operators. We extend their pioneering

work by developing a methodology applicable to a wider class of

representations.

1 These strengthening of constraint heuristics were designed but are not yet implemented.
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Our approach to this work is in the spirit of Macsyma or Dendral [Barr &

Feigenbaum 82], in which we accept a hard, real world problem and attempt
to engineer a solution to that problem using the best tools available, which

often come from a knowledge engineering of how humans solve those

problems. Our concern is not so much a_Lsto whether the mathematics has the

best representation, since as mathematicians we often begin with suboptimal
representations. Rather our emphasis is on trying to adequately and

realistically capture the mathematical reasoning. Our attention on the quality
of handling our single problem is in the spirit of those earlier pioneering
works; however, it is somewhat in variance with the current trend in

machine learning which emphasizes generality, often in the form of shallow

analysis on a large number of data sets. Our opinion is that generality is of
little use if we cannot handle the single problem in realistic detail, and there

are no computer systems in existence today which are capable of adequately

handling the class of problems we describe here. However, we strongly

believe that a Dendral or Macsyma level of effort will make this reasoning
accessible and will make available an immensely useful tool to the

mathematics community. In this paper, we describe our first efforts in that
direction.

We next present some background material to help understand the discovery
casestudy. We have investigated GPP in the context of a general exploration

discovery system, called IL. We begin by briefly describing the IL discovery

system and then the problem domain of Conway numbers.

1.1 The IL Discovery System

We have developed an exploration discovery system called IL 2 [Sims &

Bresina 89; Sims 90]. In the spirit of Lenat's AM [Lenat 77; Bundy 83] 3, IL

begins with a core of domain know!edge and control heuristics and then

opportunistically expands its knowledge. In addition to reasoning Via the

2 IL is named for lmre Lakatos, a philosopher of mathematics [Lakatos 76].

3 Lenat's follow up system, Eurisko [Lenat 83], extended our understanding of representational

issues, but didn't represent an extension of AM in the realm of mathematical reasoning.
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empirical techniques utilized by AM, IL can reason via analytic techniques;

e.g., theorem proving and explanation-based learning. Similar to AM, IL has

an agenda-based control structure with tasks and heuristics. Processes, such as

GPP, are implemented within IL as a blend of specific tasks and heuristics.

The version of GPP described in this paper has never been fully integrated

with the rest of IL, largely due to the computational overhead of running the

entire system together. The version of GPP here described ran as a stand

alone program, and utilized some of the subcomponents of the full system

such as the theorem prover. However, the representations used by this GPP

are compatible with the rest of IL, and we have generated heuristics for

enabling such an integration. Previous versions of GPP were integrated as IL

tasks [Sims 90].

IL's theorem proving uses a heuristically-controlled, depth-first, natural-

deduction theorem prover which is depth limited. Although the theorem

prover can prove only simple conjectures, its reasoning and representation

are available to the rest of IL's components. IL's theorem prover was not

used in this paper's example to verify that the operator definition that

survived the prune phase was, in fact, a valid Conway multiplication

operator. The reason is that the theorem prover is not sufficiently powerful

to verify expressions of that complexity on our computational hardware. It

was, however, used as an integral part of the GPP reasoning process to verify a

multitude of Conway expressions (e.g.,-1 < 1 ) which do require formal

proofs.

1.2 The Problem Domain of Conway Numbers

Conway numbers 4.... can be viewed as a super-clas_ of the rea! numbers which

also contains infinite and infinitesimal numbers.- As a domain of

mathematics for computer discovery research, Conway numbers have the

following advantages: (i) the formal domain description is sufficiently

parsimonious to allow a realistic representation of much of the underlying

4 Conway numbers are also referred to as Surreal numbers.
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mathematics in IL, and (ii) Conway numbers are a new area of mathematics,

so some of the interesting discoveries yet to be made may be simple enough

to permit IL to make a real contribution to the mathematics. In this section,

we briefly present the intuition behind Conway numbers.

Conway numbers can be viewed of as a generalization of both the Dedekind

cut generation of the reals and Cantor and von Neumann's generation of the

ordinals. A Conway number is a recursively defined object with a left set, L,

and a right set, R, which we write as <L I R>. Each of the left and right sets is

either empty or contains (possibly uncountably many) Conway numbers. By

definition, no member of the left set is greater than or equal to any member of

the right set. Hence, a Conway number can be thought of as sitting

(somewhere) between its bounding left and right sets. By the notation x =

<{...,xt.,...} I {...,xR,...}>, we mean that the Conway number x has x t. as a typical

element of the left set and x R as a typical element of the right set.

Y X

yR xL l XRI I I

Figure 2 Conway numbers x and y with typical elements of their left and right sets.

Since Conway numbers are recursively defined in terms of left and right sets

of Conway numbers, one begins the recursive generation by initially (on "day

0") defining a Conway number with an empty left set and an empty right set.

We will call this Conway number 0, so 0 = <{} I {}>. Now we have one

Conway number, so we can define two new Conway numbers on the next

"day" (i.e., day 1). They are: 1 = <{0} I {}> and -1 = <{} I {0 }>. This means, for

example, that the left set of -1 is theempty set and the right set contains the

Conway number _. On day 2, we can use the results of day 1 and define the

-- -- 1 -- -- 1 -- --

new Conway numbers: -2 = <{} I {-1}>, - _ = <{-1} I {0 }>, _ = <{ 0 } I { 1 }> and

2 = <{ 1} f {}>. We continue this definition process on successive "days"

forever. Hence, there is a natural notion of the age of a Conway number (i.e.,
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the objects with the smallest day of birth being the oldest), and most

definitions of Conway operators are defined via recursion over this age.

There is a homomorphism of the reals into the Conway numbers, and under

this mapping the real numbers 0, 1, -1 will map into 0, 1, and -1, respectively.

O=<{}1{}>

-I =<{lll_>

-_= < {}i {-'_}> -1/-_ = < {-_3_{SG

,Figure 3 First few Conway numbers.

m

1 = < {'0} I {} >

1/2 = < {_} I {i'} :, 2= < {-1}1 {} >

Equality and inequality are defined relations on Conway numbers with the

following definitions:

• x >_y is defined by (no x R < y) and (x _<no yL)

• x < y is defined by y >_x

• x _ y is defined by (x >__y) and (x < y)

In the above, "no x R < y" means that there is no element of the right set of x

(i.e., no x R) which is less than or equal to y. Note, these are recursively

defined over the age of the Conway numbers.

Under Conway equality, _=, two objects may be equal and yet have different left

and right sets (i.e., different representations). For example, <{} I {}> = <{-1} J

{2}>. Conway equality defines an equivalence class over these different

representations, and it is these equivalence classes which we refer to as

Conway numbers and which contain the subclass which is isomorphic to the

reals and which has the property of being a totally ordered field. Certain

properties, such as associativity, work only for the equivalence classes and do

not necessarily imply a strict identity of the underlying elements. The above

recursive-day procedure for generating Conway numbers gives a canonical
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representation for a Conway number, and we will often assume that a

Conway numbers representation is that canonical one. One characteristic of

the canonical representation is that the elements of the left and right sets are

older than the number represented (i.e., 1 = <{0} I {}> and 0 is older than

1).

To define an operator which has Conway numbers as its range, we need to

specify how to generate its left and right sets. In general, there can be more

than one set generator for a left side and more than one set generator for the

right side, in which case, the resulting left (right) side is the union of the sets

generated by each left (right) set generator. Consider the standard operator

definition for Conway addition:

• x + y is defined by <{x L + y, x + yL} I {xR + y, x + yR}>

The left and right sets of the definition each contain two arithmetic

expressions involving typical elements of the arguments (x and y). We refer

to an expression such as x L + y as a set generator because computationally

each typical element in the expression acts like an iteration variable over its

corresponding set. The sets of Conway numbers generated by the two set

generators in the left set of the definition are unioned together to form the

left set of the answer (i.e., the sum), and analogously for the right set.

The generator x L + y generates an element of the left hand side for each

element in the left set of x; hence, if x has an empty left set, then no elements

are generated. If x = y = 1 = <{ 0 } I {}>, the only x t- is 0, the only yL is 0, and

there are no y_'s nor x R's. Hence, on the exampIe "T + T the generator x t, + y

contributes {0 + 1,1 + 0 } to the left set. We then recursively evaluate 0 + 1

and 1 + 0 (which both yeild 1 ), and compute the union of the left sets.

Conway gives the following four set generators as comprising the standard

(recursive) definition of the multipticative operator for Conway numbers

(i.e., x,y). These expressions can be viewed as algebraic combinations of terms
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such as x, yR (i.e., a typical element of the right set of y), etc. This standard
definition is written asS:

• x*y=<{xL*y+x*y L +(-xL*yL), xR*y+x*y R +(-xR*yR)} [

{ xL*y + x*yR + (- xL*yR), xR*y + x*yL + (- xR*yL)}>

Breaking this expression apart we have four set generators:

• Left set generators:
xL.y + x,yL + (_xc.yL)

xR.y + x.yR + (. xR.yR)

• Right set generators:
xL.y + x.y R + (- xL*yR)
xR,y+x.yL +(. xR.yL)

We refer to this operator for Conway multiplication as conway_mult, or *

To illustrate the meaning of this definition, consider the computation of 2 *

--2, where 2" = <{ 0, 1 } I {}> and --2 = <{} I {-1, 0 }>. The left set of the result is

empty because in the first left set generator, yL, iterates over the empty left set

of-'2 and in the second left set generator, x R, iterates over the empty right set

of 2". The right set of the result is the union of {-3,-2, 0} (from the first right

set generator) and the empty set (from the second right set generator). Hence,

the result is <{} I {-3, -2, 0 }>.

.\ ':

For more details on Conway numbers, see [Conway 76]. Gonshor's book

[Gonshor 86] also gives a good presentation of the theory of Conway numbers,

but the approach and notation are different from that presented here. There

is a light hearted novelette by Knuth [Knuth 74] which lets the reader

discover the fundamental ideas of Conway numbers from the perspective of

two people on a beach who find tablets with intriguing hints.

5 In IL an expression such as xl*y + x*y r + (- xl*y r) is represented as the following typical

element expression (te exp):
[te_exp, [Generated_Set,Ans6, [[te, [XLS,XL]],[te, [YRS,YR]]],

[and, [[cmult, [XL, Y,Ansl]], [cmu!t, [X,YR, Ans2] ]

[cadd, [Ansl,Ans2,Ans3]], [cmult, [XL,YR, Ans4]],

[cnegate, [Ans4, Ans5] ] , [cadd, [Ans3,Ans5,Ans6] ] ] ] ] ] •

By [te,[XLS,XL]], we mean that XL is a typical element of the set XLS which is the left set of X.
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1.3 Problem Statement

Discovering a Conway operator definition thus involves finding some

number of left set generators and some number of right set generators;

ideally, the definition should not contain redundant generators.

Although the definitions of Conway addition and Conway negation (i.e., -x =

<{-x R} I {-xL}>) are relatively straightforward, the definition of Conway

multiplication is not. Conway does give motivation of the definition for

Conway multiplication, however, it is clear that finding the definition

requires considerable search for humans. The (re)discovery of this

multiplication operator, conway_mult, is the case study used in this paper to

illustrate the GPP method. Note that a priori knowledge of the above

definition for Conway multiplication was not used by IL in the discovery

process.

Although it is not our intention to do a protocol analysis of this discovery, it

is interesting to note the comments on this discovery by Conway. He states

"It takes a great deal of thought to find the correct definition [for Conway

multiplication.]" [Conway 76, p. 6]. He also stated that after he had developed

the basic theory of Conway numbers "Only several weeks' hard thought,

sustained by the conviction that there must be a 'generic' definition, finally

led to the 'correct' formula [for Conway multiplication]." [Conway 76, p. 27].

So even for one of the outstanding mathematicians of our era this discovery

is not a simple exercise.

This definition of Conway multiplication is the simplest definition which

survived our implementation's GPP's empirical prune given the intended

purpose for which this operator is created. Conway had similarly described

his discovery, "We can summarize by saying that the definitions of the

various operators and relations are just the simplest possible definitions

which are consistent with their intended properties [i.e., the purpose]."

[Conway 76, p. 6].

July 21, 1992 Page 11



In table 1 we summarize the problem being addressed. Since it was our

intention to push the limits of autonomous discovery in mathematics, our

interests lie in the automatic generation of the problem statement in table 1.

The discussion of that generation is outside the scope of this paper. On the

other hand, in an implementation of a mathematician aid or apprentice, it

could well be that the mathematician would explicitly supply the problem

statement.

Table 1: Problem specification for discovery of Conway Multiplication

Case Study Specification:

Given:

• Reals (objects and defining operators)

• Reals are a field

• Knowledge that there exists an isomorphism from the reals

to a subset of the Conway numbers

• The form of that homomorphism map on the ordinals

(integers) into the Conway numbers6; e.g., {0,1} -> <{0, 1} I {}>.

That is, the only part of the homomorphism that we explicitly

know is the map on the integers.

• Conway number objects

• The operator definitions of Conway addition and negation

Find:

Conway multiplication operator's definition such that:

- the above homomorphism holds

- Conway numbers are a field

- this definition of multiplication preserves the

ordinal map

(i.e., such that it satisfies the purpose for Conway multiplication)

,... ,..

6 In part, the justification for this map can be found in the Cantor/von Neumann description of
ordinal numbers. 'For example, the ordinal number 2 is associated with the set {0, 1}. The

specified mapping maps the real ordinal 2 onto <{0, 1 } I {}>, which we label as 2 ; similarly
for the other ordinals.
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According to table 1, we want to discover the definition of Conway

multiplication given itspurpose. The purpose is:

(a) the homomorphism holds between the reals and Conway numbers

(b) the homomorphism preserves the natural map of ordinals

(c) Conway numbers are a field ........

Each of these objects (e.g.,reals,field)have definitions which can be further

expanded.

In IL, this purpose is represented as a conjunction of three predicates that

correspond to these properties (a,b, and c). This fullpurpose is a constraint

on the definition of Conway multiplication. However, for several reasons,

this purpose constraint is not evaluable as written, since, for example, we do

not know the full definitions of the homomorphism or Conway

multiplication. We wish to transform this full definition until it is

operationalized (i.e., consistently evaluable - see section 2.2.1) for the prune

phase of GPP. Alternatively, we may view this full purpose constraint as the

goal to be satisfied by a design synthesis process, where we are designing a

new operator [Amarel 86].

We next describe the three phases of GPP: generate - constrained generation

of candidate definitions, prune- pruning of candidate definitions via

examples, and prove - analytic pruning with IL's theorem prover.

2. Generate, Prune and Prove

2.1 The Generate Phase

The first phase of GPP generates expressions in a language of operator

definitions which are later empirically tested. The space of expressions that is

searched consists of candidate set generators of the left and right sets. The

space of set generators is searched in order of increasing complexity (i.e., the

number of combiners) in a breadth-first fashion. This search space is built out

of a set of objects and combiners related to the to-be-defined operator (in this

case conway_mult).
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We begin our recursive generation of the set generators at the 0th complexity

level. For Conway operators, this level contains the variables7 and typical

elements of their left and right sets, as well as their negations8; i.e., the set {x,

xL, x R, y, yU yR, -x, -x L, -x R, -y, -yt, -yR}2 The n TM level of complexity is

generated by n applications of combiners to the 0 th IeveI objects. The

determination of which combiners to use is discussed next.

Notice that for the reals, integer multiplication can be defined in terms of

addition. This same relation holds between exponentiation (over the

integers) and multiplication. Hence, for the reals, there is a natural

complexity order (low to high) of addition, multiplication, and

exponentiation. We use the mapping between reals and Conway numbers to

impose the same complexity ordering for Conway operators. Then we can

define the set of combiners as the to-be-defined operator and all lower

complexity operators. For conway_mult, the set contains conway_mult (i.e.,

*) and conway_add (i.e., +). Hence, for example, the 1st level includes (-x)+y,

X+X L, xL+(-xR), xL+x L, xR +(-y), xL+y R, (-y)*y, x*x L, xL*(-xR), xR*x R, xR*(-y), xL*y R .

If we were trying to discover exponentiation for Conway Numbers, then the

set of combiners would contain conway_exp, conway_mult, and

conway add.

Looking for conway_mult's definition in such an immense search space,

without strong guidance, is not currently computationally feasible in the

context of a general purpose discovery system, such as IL. We incorporated

(into the candidate generator) the following additional constraints, in the

form of heuristics, which acts to sufficiently reduce this space to enable IL's

discovery of the standard definition of Conway addition, Conway

multiplication, complex addition and complex multiplication. These

7 Since conway_mult is a binary operator we use two variables (i.e., x and y) at this level.

8 More generally, the 0 th complexity level of an operator, consists of the appropriate variables

and their inverses under operators of lower complexity. See the paragraph that follows.

9 For operators over complex numbers, the 0 th complexity level contains the variables and their

real parts and imaginary parts, as well as their negations [Sims & Bresina 89].
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heuristics capture "rules of thumb" which, although not necessarily always

true, are useful in focusing the system's strategy and attention.

• Recursive Heuristic: In recursive Conway definitions, the age of any set
generator must be greater than the age of the object being defined
(which is, in this case, x,y).

• Dimensionality Heuristic: The set generators in an operator definition

should have similar dimensional characteristics to that of the

operator. 10

The recursive heuristic is intended to ensure that the definition is

well-formed with respect to recursion. In the case of conway_mult, this

constraint means that x*y should not appear in its own definition, but x,xL,

xL*x R, xL*x L, xR*y may all appear (because the typical elements of a Conway

number are older than that Conway number). To motivate the idea behind

the dimensionality heuristic, consider the following example. When

defining the area of a geometric object, one expects the definition to contain

terms with dimension of length-squared but, for example, not terms which

have dimensions of length-cubed or higher powers. Analogously to this

example, we expect the definition of conway_mult(x,y) to contain expressions

involving the product of two terms (e.g., xL*y R or xL*xR), but not expressions

involving the product of three (or more) terms (e.g., xL*xR*yL), nor

expressions which do not involve products at all (e.g., x L + yR).

These heuristic constraints substantially reduce the number of candidate set

generators considered in finding conwaymult's definition. Any subset of

these set generators can appear in the left set, and any subset can appear in the

right set of a candidate definition. Hence, the space of complete candidate

conway_mult definitions is the cross product of the power sets of the set of

these candidate set generators. If the number of set generators considered is

N, then this space contains 22N candidate complete definitions. In the

discovery of conway_rnult, 1734 set generators were considered before finding

the correct definition, and in the next section, we address the issue of how to

efficiently search this space of 23468complete candidate definitions. It's worth

10 For another use of dimensionality in discovery pruning applied to physical laws, see [Kokar

86]. Also, see [Bhaskar & Nigam 90].
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noting that this space really is huge and no real system could exhaustively
search it. _1 In order to address such a problem you have to be cleverer and the

rest of the paper discusses the methods that we used to turn this into a

tractable problem.

The above heuristics may eliminate certain operator definitions that are

desired. If we were to re-implement the system anew, we would further

investigate a better set of heuristics to make manageable the creation of the
candidate generators. Our point with respect to these heuristics is that there
exists useful heuristics which can be moved directly into the generate phase

to strongly control the generation process. We have used two heuristics that
make sense for recursively defined arithmetic operators, and work for the

operators we have tested, but they may well not work for other operators.

2.2 The Prune Phase

In the second phase of GPP, the candidate definitions are subjected to an

empirical prune over a set of examples. If one imagines drawing a box

around the generate and prune phases, we can view that new box as the

generator for the prove phase (see figure 1). Then the overall effect of having

the empirical prune phase is to have moved an efficient (pre)test for the

conjecture into the generator for this prove phase. As should become clear in

sections 2.2.1 and 2.2.2, the constraints that we use in this prune phase are

provably correct, in the sense that any candidate which is pruned is provably

not a valid candidate.

The pruning constraint is derived by IL from the purpose of the operator. As

an example, the purpose for conway_mult is, in part, that there be a field

homomorphism between the reals and Conway numbers. The following

expression is part of the definition of this field homomorphism:

• ('V' r 1 _ reals) (V r 2 _ reals) [(_(rlr 2) = qb(r 1) • qb(r2)] (1)

11 To get a rough measure of the size of this search space, note that if you computed in parallel

on every electron, proton, and neutron within 10 billion light years of us then you would have to

evaluate more than 23000 complete definitions on each of those particles each picosecond since

the Big Bang. Neither faster computers nor parallelism will ever be of any help.
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Here, _) is a one-to-one homomorphism of the reals into the Conway

numbers, the multiplication of reals is represented by concatenation (i.e.,
rlr2), conway_mult is represented by *, and = is the equality of Conway

numbers.

Such a homomorphism constraint is mathematically natural, and it here

proves to be powerful as an empirical pruning constraint. In the

conway_mult discovery, this constraint allowed IL to effectively prune all

generated incorrect candidate definitions. In the case of other operator

discoveries (e.g., the discovery of the multiplication operator for complex

numbers) other elements of the purpose (e.g., multiplicative identity

property) may prove valuable for the empirical pruning.

We assume here that IL has only partial knowledge of @. In particular, IL

only knows the restriction of q_ to integers. Hence, if the candidates we test

are complete definitions of conway_mult, then the homomorphism

constraint is evaluable when r I and r 2 are integers. We next describe how

partial knowledge is handled.

Definitions of domain concepts

Constraints _ Creates

Knowledge of available _

partial information /

Theory of how to transform
constraints to operationality

Other domain knowledge

Figure 4 Constraint operationalization process.

2.2.1 Partial candidate definitions

f

I
t

Examples

Operationalized
Constraint

Valid/Invalid

Prune Phase's Test

Consider again the full definition of Conway multiplication:

x*y=<{xC*y+x*y L +(-xL*yL), xR*y+x*y R +(-xR*yR)} I

{xL*y + x*y R + (- xL*yR), xR*y + x*y L + (- xR*yL)}>.
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In the generate phase of GPP, IL generates N set generators, such as xL*y or

xL*y + x*y L. Since we can have an arbitrary subset of these set generators on

the left and an arbitrary subset on the right, we have 22N complete candidate

definitions. We want to avoid explicitly testing the 22N complete candidate

definitions, so we attempt to make this task more efficient by testing partial

definitions. For example, we might test the partial definition:

<{..., xL,y,...} I {...}>

where the "..." indicates that we do not have information concerning those

entries. We can gain efficiency if whenever a partial definition is pruned,

then all complete definitions that are extensions of the pruned candidate are

(implicitly) pruned as well.

In order for this to work, it must be possible to transform the pruning

constraint into a constraint which is consistently evaluable. By a consistently

evaluable constraint we mean one which satisfies the following: (i) the

constraint is evaluable given only the partial definition of a candidate

conway_rnult, and (ii) the constraint is consistent with the original

constraint. By consistent we mean that if the transformed constraint prunes a

partial definition, then the original constraint would prune all complete

definitions which extend the pruned partial definition. However, we do not

require the transformed constraint to be equivalent to the original constraint.

One obvious decomposition for Conway operators is to independently test the

left and right sides of a definition 12, which would reduce the number of

candidates explicitly tested to 2 N÷1 A second decomposition is to

independently test a single (left or right) set generator, which further reduces

the number of candidates explicitly tested to 2N.

This decomposition of the evaluation of generated candidates into subparts is

essential for the discovery of Conway multiplication. However, the problem

decomposition complicates the testing of the individual parts, as will become

clear shortly. Next, we describe the above sequence of two decompositions

12 This decomposition als6 applies to operators over complex numbers, where left and right
sides is analogous to real and imaginary parts (see [Sims & Bresina 89]).
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applied to the conway_mult operator and the associated transformations of

the pruning constraint.

In order to independently test the left and right sides of a conway_mult

candidate, it must be possible to likewise decompose the homomorphism

constraint into a constraint that applies to a candidate left side and another

constraint that applies to a candidate right side, such that both new

constraints are consistently evaluable.

The part (i.e., conjunct) of the homomorphism constraint (equation (1)) that

is affected by testing a partial candidate is Conway equality. For Conway

numbers, A --B is defined as (A > B and A< B), and we can expand the

definitions of > and _< yielding:

• (no A R < B) and (A _<no B L) and (no B R < A) and (B _<no AL).

Note that the homomorphism constraint is of the form A = B, where A is

¢(rlr 2) and B is ¢(r 1) * ¢(r2). This expression becomes:

(no ¢(rlr2)R < ¢(rl)*q_(r2)) and (qb(rlr 2) < no ¢(rl)*_(r2 )t.) and

(no _(rl)*_(r2) R < _(rlr2)) and (_(r 1)*_(r 2) < no _(rlr2) L) (2)

Table 2: Minimum information necessary to evaluate the subexpressions of the

homomorphism constraint.

Evaluabl¢ Expression

(q_(rlr 2) _<no q_(rl)*q)(r2) L)

(no _(rl)*_(r2)R < _(rlr2))

(no _(rlr2)R < _(rl)*_(r2))

(_(r 1)*_(r 2) _<no _(r 1 r2)L )

Needed Information

Left set's definition

Right set's definition

Complete definition

Complete definition

Table 2 shows the needed information to evaluate each of the above four

homomorphism conjuncts. As long as r 1 and r 2 are integers (whether or not

the candidate is a complete definition of conway_mult), then we can compute

(_(rlr2); in the conjunction above, this means A, A R, and A L are all evaluable.

The conway_mult candidate is used to compute q_(r 1) * _(r2); hence, if the

candidate is a partial definition, then some part of B (in the above
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conjunction) may not be evaluable. If our partial candidate definition is just
the left set generators, then we can only compute BL- we can not compute B

nor BR; hence, only one of the above four conjuncts is evaluable, (i.e., A _<no

BL). Similarly, if our partial candidate definition is just the right set
generators, then the only evaluable conjunct is (no BR G A). Thus, we can

decompose the original constraint into the following consistently evaluable
constraints:

• left-constraint:

('V' rl _ reals) (V r 2 _ reals) [(_(rlr 2) < no [qb(r 1) * (_(r2)]t,]

• right-constraint:

('9' r 1 _ reals) (V r 2 _ reals) [no [(_(r 1) * qb(r2)]R < qb(rlr2)] (3)

The left-constraint applies to the set generators for the candidate expression's

left set, and similarly the right-constraint applies to those of the right set.

Together, these two constraints are less expensive to evaluate than the

original constraint; on the other hand, they form a less stringent prune than

the original constraint.

Consider the second Conway operator definition decomposition, mentioned

earlier, of testing a single generator from the set of left set generators or from

the set of right set generators. How must the above left and right constraints

be transformed to be consistently evaluable when the candidate is a single set

generator? A left set generator's contribution to the product is a subset of the

product's left side set. Because of the "no" quantifier in expression (2), if the

left constraint derived from (2) is not satisfied for even one left set generator,

it will not be satisfied for any left side definition which includes that set

generator. Therefore, for this example, no additional transformation is

necessary; we can simply generate single set generators and test each one

individually as a candidate right set generator or as a candidate left set

generator using the above two constraints.

2.2.2 Recursive partial definitions

There is an additional complication, resulting from Conway operators being

recursive, that is ignored in the preceding discussion. If the candidate is only

a partial definition of conway_mult, then recursive calls to conway_mult
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only return part of the product; hence, the above two constraints are not (in

general) evaluable. A solution to this problem is to use mathematical

induction. That is, in order to determine whether a single set generator

satisfiesthe pruning constraint on a specific example, IL could perform an

inductive proof where the induction is over the age of Conway numbers.

The inductive hypothesis is that the homomorphism constraint (instantiated

with the specific example) holds on conway_mult computations when the

arguments are older. Recall that the recursive heuristic used in the generate

phase insures that the recursive conway_mult callshave arguments that are

older than the arguments to the top level conway_mult. Since 0 is the oldest

number, the base case is 0 * 0. Since 0 has empty right and leftsets,the

pruning constraint isvacuously satisfied.So, IL must prove that the top-level

conway_mult computation satisfiesthe pruning constraint (on the specific

example) under the inductive assumption that the recursive conway_mult

computations do.

If IL has to perform a formal inductive proof for each pruning example, we

would lose much of the efficiency gained by testing single set generators.

Therefore, instead of this costly process, the (original) homomorphism

constraint is used to create an "ideal" conway_mult function, called

ideal_conway_mult, that, by definition, satisfies the constraint. The

recursive calls in the conway_mult candidate are replaced with calls to this

ideal conway_mult. Using this function to compute the recursive calls to

conway_mult is valid under the inductive hypothesis.

Creating the ideal_conway_mult involves transforming the constraint into a

function that, given two Conway numbers, returns the product without using

conway_mult. This transformation results in (see figure 5): cl " C2 =def

q_(qb-l(cl)_-l(c2)), where ideal_conway_mult is represented by .. That is, to

compute the product of two Conway numbers cl and c2, we first map c I and c 2

into real numbers, then we multiply those real numbers, and then map that

(real) product to a Conway number.

This function obviously satisfies the homomorphism constraint. As we

stated previously, IL has only partial knowledge of qb; furthermore, IL does
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not have a way to directly compute _)-1. However, IL saves examples of _);

i.e., it caches input-output associations (i.e., <real #, Conway #> pairs) that it

has computed. So, ideal_conway_mult can only be evaluated on Conway

numbers that were previous outputs of 9.

reals (mult.):

Conway numbers:

(rl) (r2) = r3

,$
Cl • C2 =def C3

Figure 5: Defining ideal Conway multiplication which we denote as ideal_conway_mult or -,

iSince t)(r) is also written as r, this definition can be written as: rl ° r2 = rlr2

2.2.3 Implementation of constraint transformation

In this subsection, we briefly describe our implementation of the

operationalization of a pruning constraint given a partial candidate and the

creation of the ideal operator for evaluation of recursive calls. Recall that the

objective of this transformation is a pruning constraint that is consistently

evaluable with respect to the given partial candidate definition. The overall

process can be summarized as follows. The pruning constraint is transformed

using the rewrite rules and IL's definitions until it contains evaluable

subexpressions that refer to the partial candidate definition. This process is

carried out in a depth-first order. At each step, the current subexpression is

tested symbolically for evaluability; if it is not evaluable, then rewrite rules

are applied if available, else, the subexpression is expanded and partially

compiled if possible.

We now illustrate this process with some example transformation steps from

the example of this paper. In this case, the partial candidate definition is a

single (right or left) set generator, and the original pruning constraint in IL

looks like the following expression. Recall, this is part of the purpose of

Conway multiplication. The notation is a list of a predicate name followed by

its arguments, with variable names capitalized. Except for minor syntactic

-4
- :k
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changes to improve the readability, the following expressions use IL's

representation.

(group_homomorph ism

real to conway_map

[reals real_mult]

[conways conway_mult])

This expression is a predicate that states that real_to_conway_rnap is a

homomorphism from the multiplicative group of reals to the multiplicative

group of conways. Expanding the definition of group_homomorphism

results in the following.

(and

(get_value conways equality Equal)

(forall Real1 e reals

(forall Real2 e reals

(and

(real to conway_map Real1 Conwayl)

(real to conway_map Real2 Conway2)

(real_mult Real1 ReaI2 Real_product)

(real_toconway_map Real_product Conway3)

(conway_mult Conwayl Conway2 Conway_product)

(Equal Conway3 Conway_product)))))

Partial compilation is used whenever possible to simplify the expression

during the transformation process. Any subexpression whose input

arguments are constants and whose relation's definition is executable, such as

the above get_value, is evaluated. The resulting values assigned to the

subexpression's output variables are substituted throughout the rest of the

expression. Applied to the above expression, partial compilation results in

the following.

(forall Real1 _ reals

(forall Real2 _ reals

(and

(real_to_conway_map Real1 Conwayl)

(real to conway_map Real2 Conway2)

(real_mult Real1 Real2 Real_product)
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(real to conway_map Realproduct Conway3)

(conway_mult Conwayl Conway2 Conway_product)

(_ Conway3 Conway_product))))

Since we have only a partial definition for conway_mult, the conway_mult

subexpression (above) is not evaluable and would be expanded (after a few

steps) into an expression that described how the sets of left and right

generators are used to produce the value of Conway_product. At this point a

partial evaluation rewrite rule can be applied.

The partial evaluation rewrite rules expand an expression such that an

evaluable subpart can be isolated. One of these rewrite rules regards how a

right (left) set is computed from the set of right (left) generators. The rule

specifies that such a computation can be rewritten as the union of the set

produced b_' the first generator and the set produced by the rest of the

generators. This rewrite allows the application of a generic rule that notes

that the set produced by the single candidate generator is a subset of the set

produced by any complete definition that includes the candidate.

This conclusion enables application of the following consistency preserving

rewrite rule (where C is some constraint):

If S c T, then can rewrite _'V'x _ T C(x) as _'V'x _ S C(x).

This rule is used, for example, to transform the left set constraint (listed as the

first entry in table 2 above) to apply to the subset of the left set produced by a

single candidate left generator. The objective of the consistency preserving

rewrite rules is to transform the constraint so that it is evaluable with the

partial information while maintaining that the transformed constraint is

consistent with the original constraint.

The transformation process terminates when the partial candidate definition

occurs as a subexpression in the overall constraint and the conjuncts of the

constraint Which refer to this partial definition are evaluable. At this point
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the subexpressions of the conjunction that are not evaluable are identified
and deleted from the expression33

The symbolic test of evaluability is defined as follows. An expression is
considered evaluable if every subexpression can be evaluated in sequence.

For a subexpression to be evaluable, its predicate relation must be well-
defined within IL and each of its input arguments must either be a constant

or be considered bound. An input variable is considered bound if either the

variable is quantified or if the variable appears as an output variable in some

preceding subexpression that is evaluable.

The result of the transformation process is a constraint that is evaluable on

the partial candidate definition and that is consistent with the original

constraint. The implementation is general in that it can be applied to any IL

constraint expression; however, it does depend on the availability of domain-

specific rewrite rules (i.e., partial evaluation rules and consistency rules).

Recall that part of the operationalization of the pruning constraint involved
the creation of an ideal operator (e.g., ideal conway_mult) for the evaluation

of recursive calls (see figure 5). The implementation of this automatic

creation uses similar techniques as the above described transformation

process, and depends on domain-specific rewrite rules to transform

unevaluable subexpressions to ones that can be evaluated with the partial

information available.

2.2.4 Examples used in pruning

By a valid pruning example for testing a candidate definition, we mean an

input vector for which the pruning constraint is evaluable. For the left and

right constraints in (3), the components of the input vector are the variables

that are universally quantified; hence, a pruning example consists of values

for rl and r2. The partial knowledge in the pruning constraint influences the

13 IL's Prolog-like predicate representation of relations does not usually allow explicit nesting.
Hence, this deletion of a subexpression amounts to making a conjunct true, thus generalizing the

expression.
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examples on which the constraint is evaluable. The partial knowledge about
q_restricts rl and r2 to be integers which each satisfy the following: (i) IL
knows (_(ri) = ci, (ii) for each right typical element of ci, Ci R, IL knows a real

number si such that (_(si) = ci R, and (iii) for each typical left element of ci, ci L,

IL knows a real number ti such that (_(ti) = CiL. These last two properties

ensure that ideal_conway_mult is evaluable. Examples of evaluating the

pruning constraints are presented in the next subsection.

The generation (or selection) of good pruning examples can be expensive and

depends on a knowledge-driven analysis of the problem domain. Ideally, the

pruning examples would be as independent as possible, so that the sets of

candidates that each would reject would have little overlap. There is a trade

off between the expense of pruning with a large number of lower quality

examples (i.e., not very stringent filters) versus the expense of finding higher

quality examples. For example, one (knowledge-rich) heuristic for

multiplication would be to use examples in each of the three cases: (i) positive

number times positive number, (ii) positive number times negative number,

(iii) negative number times negative number. This selection of good pruning

examples was not implemented; rather, training examples were randomly

selected.

2.2.5 Example of prune evaluation 34

To summarize the prune phase, over a set of examples (valid values for rl

and r2)each candidate set generator that the system generates is empirically

tested as a possible left set generator and as a possible right set generator for

the definition of conway_rnutt using the two pruning constraints of (3):

• left-constraint: (_(rlr 2) < no [(_(r 1) * (_(r2)]L

• right-constraint: no [(_(r 1) • _(r2)] R < _)(rlr 2)

We now illustrate the pruning process on a particular candidate right set

generator, say x R * yR, over the following two pruning examples: (2, 3) and (-2,

-3). Recall, that x R * y R being a right set generator means that the full

14 The activities described in this section were fully implemented except as noted.
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definition of x * y is of the form: x * y = <{...} I {...,x R * yR,...}>; or in this case:

q_(rl) • q_(r 2) = <{...} E {...,(_(rl) R * (_(r2)R,...}>. That is, _(rl)R • q_(r2) R is one

particular member of the set of right set generators [_)(r 1) * qb(r2)] R. Hence, for

this candidate, the right-constraint becomes: [no [(_(rl)R * (_(r2) R] -< q_(rlr2)].

Since with this candidate, x * y is recursive, the recursive call of * in x R * yR is

replaced by ideal_conway_mult,., yielding: no [(_(rl)R • _(r2)R] ---_(rlr2),

which is equivalent to: no [(_(_)-l((_(rl)R)(_-l((_(r2)R))] < q_(rlr2), by the

definition of ideal_conway_mult.

For a first instance, consider the case of the real multiplication (2)(3) = 6. Our

example is the input vector (2,3). For our right set generator, x R * yR, the

right-constraint becomes: no [_(2) R • _(3) R] -< (_(6) = 6. The mapping for

integers is assumed known and includes the following: q_(2)= 2 = <{1, 0} I

{}>,(_(3) = 3.= <{2, 1, 0} I {}>, and (D(6) = 6 = <{5, 4, 3, 2, 1, 0} I {}>. So,

there are no elements (_(2) R nor (_(3) R. Hence, the right-constraint is satisfied.

In other words, x R * yR passes our right-constraint on the example (2,3) and is

still in the running to be a generator for the right set of multiplication.

For the second example, consider the case of the real multiplication, (-2)(-3) =

6, where our example will be the input vector, (-2,-3). Let us consider the same

right set generator as above, x R * yR. The right-constraint is: no [q_(-2) R • q_(-

3) R] _<(_(6), which can be rewritten as: no [_R o _R] < -6-. The assumed

integer mapping gives: --2 = <{} I {-1, 0 }>, and -'3 = <{} I {-2, -1, 0 }>. Picking the

first elements of .-_R and--_R the constraint becomes: not (-1 • -2 __ 6 ). From

the definition of ideal_conway_mult, °, (see figure 5) we know

-1 • -2 = (-1)(-2) = 2, and so this constraint becomes not(2 < 6).

However, it turns out that an application of the definition of Conway

inequality, <, to the definitions of-2- and -6- produces the expected result that

indeed -2- < T. Hence, not(-2- < -6-) is false and the candidate right set

generator, x R * yR, fails the right-constraint on this example. Since a valid

right set generator candidate must satisfy the right-constraint on all examples,

we can prune this candidate. IL would then continue to search for other valid

candidates.
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If all candidate (right or left) set generators are pruned, then IL reinvokes the

generate phase to generate the next higher complexity level of candidate set
generators. If there remains a small number of set generators, then the

processing would pass on to the prove phase of GPP. If there remain too
many set generators, then the pruning constraint would be strengthened and

the prune phase would continue. 15 The pruning constraint can be

strengthened by (i) increasing (or improving) the set of pruning examples, or
(if) using more of the operator's intended purpose to derive the pruning
constraints; in this case, this would mean incorporating, in the pruning

constraint, some of the other properties (in addition to the homomorphism)
in the definition of a field. The decision of how much of the purpose to use

in deriving the pruning constraint is another efficiency tradeoff. Ideally, one
wants to use those parts of the "purpose" which will produce the strongest

pruning constraint per (computational) cost.

2.3 The Prove Phase

In the third phase of GPP, a single complete candidate definition (for

conway_mult) is formed from all left and right set generators that have not

been pruned. IL would then conjecture that conway mult with this

definition satisfies conwaymult's specified purpose. In the example of this

paper, it would have then conjectured that Conway numbers with

conway add and this candidate conway_mult form a field. During the

process of proving this conjecture, IL may opportunistically prove a number

of other properties (e.g., that conwaymult and Conway numbers without

Conway zero form a group).

IL's theorem prover might prove the conjecture false or it might be unable to

prove it either true or false due to limitations of the theorem proving process.

Various strategies for proceeding can be appropriate; for example: (i)

generating and pruning more candidate conway_muIt definitions, (if) trying

to conjecture and prove needed lemmas, (iii) changing conway add's

15 Although we designed this constraint strengthening process, it has not been implemented.
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definition, (iv) changing the definition of Conway numbers, etc. Further

discussion of the prove phase is contained in [Sims 90].

3. Concluding Remarks

3.1 Historical Context and Related Work

We realized for some time that IL's discovery of the definition for Conway

multiplication would be an interesting accomplishment. However, since it

was also clearly a challenging problem even for humans, we avoided it until

work by Wei-Min Shen [Shen 90] raised the prospect of a reasonable

methodology for modeling the discovery. In order to understand why

ultimately Shen's approach is inappropriate for our problem, it is necessary to

go back and address a similar problem in an earlier system, Douglas Lenat's

AM program [Lenat 77].

AM had a large body of heuristics which controlled its reasoning and

consequently its discoveries. AM began with a core of knowledge about set

theory and those relatively general heuristics, and was able to discover some

concepts of real numbers including addition, multiplication, and prime

numbers. Among the discoveries made by. the AM program were the

mathematical operators of addition and multiplication for nonnegative

integers. At first appearances, this methodology should be applicable for the

problem we are addressing of discovering Conway multiplication. What

Shen was able to do was to give a very elegant and parsimonious

representation of AM's operator discovery process by describing the process in

terms of Backus' functional transformations [Backus 78]. The work of this

paper can be seen as follow up work to Shen's.

Shen's process appears very general, and it seemed a natural way to encode

operator discovery in IL. Consequently, we considered how we might

implement these functional transformations in IL. After a fair amount of

consideration, we came to the opinion (although by no means a proof) that to

make the described discoveries with functional transformations required a

very special representation for the mathematical objects (and this applies to
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AM as well)3 6 These objects needed to be represented literallyas a bag of

"t's".Although this representation is somewhat intuitive,it only works for

integers - and small integers at that. Itis usually unreasonable to represent 1

billion as I billion "t's"inside of the computer. So we need alternative

representations for numbers. However, the functional transformations used

in the Lenat/Shen work do not seem to work on these alternative

representations. For example, the definition of the operation of addition in

AM is literallyjust the concatenation of these bags of "t's",corresponding to

the numbers added. What this concatenation operator translates into for

other representations is not obvious, and the transformations that create

these operators used special properties of the bag of "t's"in a strong way (e.g.,

that they are associative and commutative under concatenation).

We then looked for alternative methods for discovery of Conway

multiplication. As has often been the case with our other work with IL, the

guidance for how to do this came from the mathematicians. To discovery

such an operator, a human mathematician uses a great deal more domain

knowledge, for example, the purpose for which the operator is being created.

In related research on the discovery of graph theory properties, by the use of

an elegant representation Epstein is able to generate only provably correct

properties [Epstein 87]. Thereby she was able to move a powerful prune into

the generation process in an effective way.

Kedar [Kedar 88] has investigated the use of purpose in the discovery of

definitions of day-to-day objects (such as a cup), and our work can be seen, in

part, as an extension of that work to mathematical domains. We search for

an operator definition consistent with a specified purpose.

16 Lenat and Brown may have understood this as a result of their work on the representations of
AM and Eurisko [Lenat and Brown 841. They refer in a general way to the importance of

representations in AM's discoveries. However, it was not obvious to us that their evaluation
suggested such a strong connection between the operator discoveries and the representation of
numbers as bag of "t's". Rather Lenat and Brown emphasize the important contribution of their
Lisp representation for the discovery of number theory expressions. Shen's functional
transformation work is of importance, in part, because it gives us the clarity to better
understand AM's discoveries.
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Kokar [Kokar 86] has investigated the discovery of concepts consistent with a

constraint of invariance (such as under change of units), and Lowry [Lowry

92] has modeled the discovery of special relativity given the requirement of

invariance of the equations under a symmetry group. Both of these uses of

invariance are analogous to our use of the homomorphism constraint.

Operationalization has been utilized in machine learning [Mostow 87],

especially in the context of explanation-based generalization [Keller 87; Hirsh

90]. We have borrowed the notion of operationalizing and the flavor of the

process from this work, as well as incorporating techniques of partial

evaluation from the programming literature [Bjorner, et al. 87]. We have

coupled the operationalization techniques together with techniques for

handling partial information concerning operators, etc. A somewhat related

approach was used by Carbonell and Gil [Carbonell & Gil 90] in the

refinement of partially specified Strips operators for grinding telescopes.

However, Strips operators and this refinement process differ in nature from

those needed in mathematical domains.

Our method of problem decomposition is a specialization of more generic

methods that have been used in the planning community (e.g., [Nilsson 71]).

The use of examples to control the size of the spaces searched is well

understood in mathematics and has a long history in artificial intelligence as

well [Gelernter 63]. Bledsoe gives the perspective "we cannot over emphasize

the importance of being able to calculate properties about a particular

[instance] rather than prove the same properties about the uninstantiated

variable." [Bledsoe 83]. Explanation based learning typically uses a single

example to guide the operationalization process. In contrast, our constraint

operationalization does not use examples. In GPP, examples are used in

combination with the operationalized constraint to prune candidate partial

definitions.
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3.2 Experimental Results

This work is implemented in Prolog. We have implemented the generate

and prune phases of GPP, including the automatic transformations of the

pruning constraint to apply to a partial candidate and the construction of an

ideal function to use for recursive calls to a partial candidate. The prove

phase is a simple call to IL's theorem prover, VERIFY. VERIFY is widely used

in GPP and other activities of IL for the proofs of simple results. We did not

however call VERIFY to prove that the Conway multiplication definition that

survived the prune phase, because such a proof is far beyond the limited

current capabilities of VERIFY. We have successfully tested the generate and

prove phase implementation on the (re)discovery of the Conway and

complex multiplication operators, as well as the Conway addition operator.

The results on the conway_mult case study were: (i) the process discovered

the correct definition in generation level 5, (ii) the number of candidates set

generators empirically tested was 3468 (including both right and left set

generators), and (iii) the generate and prune phases took on the order of an

hour on a dedicated TI Explorer II.

3.3 Summary

GPP was tested on the discovery of the operator definition for Conway

multiplication (described herein) as well as the similar and simpler examples

of the discovery of Conway addition and complex multiplication [Sims and

Bresina 89]. This methodology trivially applies to simpler cases of Conway

negation and complex addition and negation.

The purpose constraint is, in general, not operational for application to a

given set generator candidate and example. There is only partial information

concerning the mapping from the reals to the Conway numbers and we only

know part of the definition for Conway multiplication when we evaluate it.

Having only partial knowledge available is a major source of complexity. Due

to the partial knowledge, the pruning constraint requires significant

transformation in order to operationalize it.
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A mathematician would probably use less search and perform a deeper

analysis in the discovery of Conway multiplication than IL does. However,

even given IL's bias toward trading search for knowledge, doing this

discovery in a general way required mathematical reasoning that was both

surprisingly subtle and tantalizingly close to our modeling capabilities.

Under favorable circumstances the methods we have demonstrated may lead

to new discoveries, but the techniques are not yet ready for widespread use.

We believe that with only minor changes our implementation should be

applicable to similarly structured mathematical objects, such as matrices,

quaterions, tensors, etc.

However, we believe that for techniques in machine learning, such as those

of machine discovery, to be relevant to the work of doing actual mathematics,

the issue of concern is not generality but depth. We have presented what we

feel is a fairly deep and realistic rendering of a piece of nontrivial ::_

mathematics. Our concern is not so much where else it works but rather

what important subtleties are we not capturing. In that spirit, we end by

pointing out issues which are not adequately handled in this piece of

research.

One of the most serious limitation of our overall effort to model this kind of

theory formation in mathematics is the effort required for detailed knowledge

engineering.

A specific limitation of our implementation is the assumption encoded in the

problem decomposition method employed. In the case study, we used a

decomposition of the problem of finding a complete operator definition into

the independent problems of finding a left side generator and finding a right

side generator. Unfortunately, the generators for some operators, such as the

Conway square root, interleave recursively between the left and right sets;

hence, the described problem decomposition is not appropriate for this case.

A more general solution would necessitate treating the problem

decomposition process as a search through alternative decompositions; as is

done, for example, in the problem reduction system REAPPR [Bresina 88].
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The following are aspects of the generate and prune process that may prove to

be limitations for the discovery of certain types of operators.

• The search for candidate generators is terminated when a small,

nonzero number of generators in a given level of complexity is found.

• The system assumes that all the left set generators and all the right set

generators have the same complexity.

• At termination of the generate and prune phases, the proposed

definition is comprised of all the surviving left set generators and all

the surviving right set generators. Instead, the system could propose

definitions using subsets of these generators.

The contribution of this work to mathematics is a glimpse of what the not too

distant future may offer in the way of automated research aids. The

contribution_ to AI include the following.

• the in-depth treatment of a difficult mathematical problem utilizing a

multitude of AI techniques

• the handling of partial information

This partial information was a major contributor to the complexity of

the system design and at the same time was essential to handling the

immense a priori search space.

• we introduced purpose-directed generate, prune and prove (GPP) as a

method for operator creation and verification

We believe, at this time, that great insights and subsequent progress will

come from adequately handling a small number of real problems in depth,

rather than following the more common pursuit for generality via the

treatment of many simplified cases.

Acknowledgements: Thanks to S. Amarel, P. Friedland, and the many

reviewers of previous drafts who provided many helpful suggestions.
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